MAT 3749 1.3 Part I Handout

 Just For Fun……ction?
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 One-to-One Functions  
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 Equivalent Criteria
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 Example 1
Determine if the given function is injective. 
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 Onto Functions
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 Equivalent Criteria
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 Example 2
Determine if the given function is surjective. 
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 Count Your Blessings…
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 Bijections
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 Inverse Functions

If 
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 Equivalent Sets
Two sets 
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 and 
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are equivalent if there is a 1-1 function from 
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 Example 3
The set of odd and even integers are equivalent.
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	Proof




 Countable Sets
A set
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 is countable if it is either finite or 
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 is equivalent to
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 Remark

If an infinite set
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 is countable, then we can list its element as a sequence 
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 Theorem 
The interval 
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Suppose 
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[image: image37.wmf]{

}

1

n

n

a

¥

=

.  For each of the real number 
[image: image38.wmf]n

a

, we can represent it by its infinite decimal expansion.  Thus, the sequence is 
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Construct a real number 
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Then, 
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Thus, 
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 Corollary
The reals 
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are equivalent to 
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, and are hence uncountable.
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 Theorem

The set 
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 of rationals is countable.

	Proof Outline
1.  List all the positive rational numbers as follows:
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2.  Form a sequence 
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 Classwork (Family of Sets)
In this classwork, we are going to review the concept and notations of Family of Sets.  Below, 
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Let 
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Variations
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Here are the formal definitions for the union and intersection of families of sets.

Definition

Let 
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(a) Make an educational guess on the explicit interval form of 
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